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1. INTRODUCTION

In this letter, we consider the problem of modelling multi-degree of freedom (d.o.f.) impact
oscillator systems using coe$cient of restitution models. Impact oscillator systems have
been studied extensively in recent years following the work of Shaw and Holmes [1]. Most
of this work has been focused on models for single-d.o.f. systems [2], although inevitably
experimental systems studied were often multi-modal (see, for example, references [3}6]). In
the majority of both mathematical and experimental impact oscillator studies the impact
process was modelled using a coe$cient of restitution rule. This rule was both e!ective and
simple in capturing the key properties of an impacting body. However, in experimental
studies using an impacting beam system, Thompson et al. [7] noted that a low value of the
coe$cient of restitution must be used in numerical simulations of the system in order to
match dynamical behaviour. Similar results were found by Weger et al. [8]. Thompson et al.
[7] conjectured that this reduction in value for the coe$cient of restitution was due to the
transfer of energy into higher modes of vibration.

We consider here the dynamics of a multi-d.o.f. linear system, with proportional damping
and a single point of impact. An energy balance approach for a periodic impacting motion is
described. Then we derive a relationship between modal energy and the coe$cient of
restitution which exists for periodic impact orbits of multi-d.o.f. systems. For certain
experimental systems this analysis can be used to estimate values for the coe$cient of
restitution [9]. Here we demonstrate the e!ects of increased modal behaviour by modelling
a multi-modal beam system using models with one and four modes.

2. MATHEMATICAL MODEL

For a multi-modal system with N d.o.f. such as the lumped mass model shown in
Figure 1, the equations of motion can be expressed in matrix form as

[M]xK#[C]x5 #[K]x"f(q), x
N
(x

s
, (1)
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Figure 1. Schematic representation of an N-d.o.f. impact oscillator.
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where [M], [C], [K] are the mass, damping and sti!ness matrices, respectively,
x"Mx

1
, x

2
,2, x

N
NT the displacement vector, x

s
is the distance to the impact stop and

f(q)"M f
1
, f

2
,2 , f

N
NT the external forcing vector. For a lumped mass system, the coupling

between masses occurs via the matrices [C] and [K], which are non-diagonal. The mass
matrix [M] is a diagonal matrix. For this system, we assume that only mass N can impact.
When an impact occurs, we apply a coe$cient of restitution rule, which in matrix form can
be written as

x5 (q
`

)"[R]x5 (q
~
), x

N
"x

s
, (2)

where q! is the time just before impact, q# is the time just after impact, r3[0, 1] is the
coe$cient of restitution and [R]"diagM1, 1, 1,2 , 1, 1,!rN. Thus, the impacting mass,
mass N, has its velocity reversed and reduced by r at impact. This process is assumed to be
instantaneous.

As we are primarily interested in systems with uniformly distributed parameters, we
consider the case where m

j
"m, c

j
"c, k

j
"k for j"1, 2,2, N, such that c is proportional

to k. Then we can write [C]"c[E] and [K]"k[E], where [E] is the coupling matrix
[10]. Then, by considering the undamped, unforced, (non-impacting) system the natural

frequencies of the system are given by u
nj
"Jj

j
k/m for j"1, 2,2, N [11], where j

j
j"1, 2,2 , N are the eigenvalues of [E]. The eigenvectors n

j
corresponding to each j

j
normalized such that En

j
E"1 de"ne the corresponding mode shapes of the system. Using

these eigenvectors we can construct a modal matrix [W]"[Mn
1
N, Mn

2
N ,2 , Mn

N
N]. We

can then de"ne modal co-ordinates, using the linear transform x"[W]q where
q"Mq

1
, q

2
,2, q

N
NT. Substituting this into equation (1) and premultiplying by [W]T

decouples the system ([W] is orthogonal such that [W]T"[W]~1) to give

[I]qK#
c

m
[K]q5 #

k

m
[K]q"

1

m
[W]T f (q), (3)

where [K] is the diagonal eigenvalue matrix. We will consider only harmonic forcing of the
form f (q)"A cos(Xq), A"MA

1
, A

2
,2, A

N
NT. Thus, we can simplify equation (3) such that

for each mode,

qK
j
#2f

j
u

nj
qR
j
#u2

nj
q"

F
j

m
cos(Xq), j"1, 2,2, N, (4)
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where F"[W]TA, F"MF
1
, F

2
,2 , F

N
NT and f

j
"(c/2)Jj

j
/km is the modal damping

coe$cient.
However, the motion of the system is constrained such that x

N
(x

s
during excitation. If

we de"ne the vector w"MW
N1

, W
N2

,2, W
NN

NT, then in terms of modal co-ordinates an
impact occurs when WTq"x

s
. Hence, equation (3) is valid only for wTq(x

s
which is

equivalent to the condition that x
N
(x

s
.

We are considering a linear coupled system in physical co-ordinates, x, with a plane of
discontinuity representing an impact law; the coe$cient of restitution. This plane of
discontinuity crosses only a single co-ordinate axis x

N
, in phase space. Transforming this

system into modal co-ordinates, using the linear transform de"ned by the modal matrix
[W] decouples the equations of motion. However, transforming the discontinuity into this
modal space results in all modal co-ordinates becoming discontinuous. So now the system is
coupled via the impact event.

3. MODAL ENERGY ANALYSIS

For a multi-d.o.f. system, energy loss occurs at impact via the coe$cient of restitution
rule, and during free #ight due to viscous damping. Now we consider a modal energy
analysis of a steady state vibro-impact motion of a multi-d.o.f. impact oscillator. From this
analysis we derive a relation between energy lost during impact and free #ight (modal
energy).

In modal space the coe$cient of restitution rule, equation (2) becomes

[W]q5 (q
`
)"[R][W]q5 (q

~
), wTq"x

s
. (5)

This leads to the relation for the modal velocities after impact

q5 (q
`
)"[R) ]q5 (q

~
), wTq"x

s
, (6)

where [R) ]"[w]~1[R][W] is the matrix which represents a linear transform of modal
velocities just before impact to modal velocities just after impact. This transformation also
represents the discontinuous jump in velocities at impact.

Premultiplying the (modal) equation of motion for an N-d.o.f. system, equation (3) by mq5 T
and integrating with respect to q gives an expression for the energy at time q* as

m

2
(q5 Tq5 (q*)!q5 Tq5 (q

i
))#

k

2
(qT[K]q (q*)!qT[K]q (q

i
))

"P
q*

qi
q5 TF cos(Xq) dq!c P

q*

qi
q5 T[K] q5 dq, (7)

where q
i
(q*(q

i`1
is a time between two consecutive impacts, q

i
and q

i`1
. The terms on

the right-hand side of this expression represent the modal forcing energy FE and modal
damping energy DE respectively. For each mode, we refer to FE

j
!DE

j
at the end of

a period as the residual modal energy, where

FE
j
"P

q*

qi
qR
j
F
j
cos(Xq) dq, DE

j
"c P

q*

qi
qR
j
j
j
qR
j
dq. (8)

This is a measure of modal energy gain during free #ight, over one period of motion for
each mode, and the sum over all modes, with FE"+N

j/1
FE

j
and DE"+N

j/1
DE

j
,

represents the energy gain for the whole system.



Figure 2. Two-d.o.f. impact oscillator numerically generated phase portraits. Parameter values m
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We evaluate this expression for a period one, one impact motion, denoted P (1, 1).
A numerical simulation of such a P(1, 1) orbit is shown in Figure 2 for a two-d.of. system.
The phase portrait is plotted in both modal (Figure 2(a)) and physical (Figure 2(b))
co-ordinates.

We examine the whole period of motion between two impacts q
i
and q

i`1
for such an

orbit by setting q*"q
i`1

. As we are considering the system from one impact to the next, the
modal displacement will be the same at q

i
and q

i`1
, and hence the potential energy term

(second term in equation (7)) is zero. For each impact q
i
,q

`
and q

i`1
,q

~
. The kinetic

energy term ("rst term in equation (7)) can be evaluated using the relations;
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~
) and q5 T (q
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)"x5 T(q

~
)

[R][W], to give
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which reduces to

m

2
v2
N
(1!r2), (10)

where v
N

denotes the velocity of mass N at impact (q
~
). Thus, we can reduce equation (7) to

an energy balance expression for a P(1, 1) orbit

m

2
v2
N
(1!r2)"

N
+
j/1

(FE
j
!DE

j
). (11)

The energy lost at impact (left-hand side of equation (11)) is equal to the sum of the
residual energy of all the modes in the system. In other words, the energy lost at impact, IE
say, is equal to the energy input, FE, less the energy dissipated due to viscous damping, DE.
So IE"FE!DE or FE"IE#DE for a P(1, 1) orbit.

By rearranging equation (11) we can obtain an expression for the coe$cient of
restitution

r"S1!
2

mv2
N
G

N
+
j/1

(FE
j
!DE

j
)H. (12)

Then we can reduce equation (12) to

r"S1!
RE

KE
i

, (13)

where KE
i
"mv2

N
/2 is the kinetic energy at impact, and RE"+N

j/1
(FE

j
!DE

j
) is the

residual energy for all modes.
We know by de"nition that r3[0, 1], is a real positive quantity. The kinetic energy at

impact KE
i
'0 is a strictly positive quantity (excluding zero velocity impacts, which do not

occur in stable periodic motion*the case considered here). Thus we can see that for real
values of r, 0(RE(KE

i
. These bounds apply to P(1, 1) orbits in systems with an

arbitrary N degrees of freedom. Then from equation (13), we can see that by increasing
residual energy or decreasing kinetic energy at impact, the coe$cient of restitution is
reduced. This is shown in Figure 3(a) for KE

i
"1)0, and in Figure 3(b) for KE

i
'RE. Thus,

from Figure 3, we see that for a multi-modal system, it is possible to have a complete range
of r values 0)r)1, dependent on the energy balance of the system.

4. MODELLING PHYSICAL VIBRO-IMPACT PROBLEMS

The problem of estimating a value for the coe$cient of restitution arises when modelling
a physical system such as an impacting beam [7, 8, 12]. In reference [7] a value for r was
selected using the material type during impact, steel on steel, as the criteria. Using
reference sources such as reference [13] one can estimate that for steel on steel impact
a coe$cient of restitution value in the range 0)85}0)95 should be chosen. As an alternative
direct experimental measurements can be made of the velocity before and after impact to
"nd the coe$cient [14]. However, in multi-modal systems the in#uence of higher modes
after impact may impede this process. In addition, it is clear from reference [13] and
equation (12) that the coe$cient of restitution is a non-linear function of impact velocity as



Figure 3. Coe$cient of restitution as a function of energy for multi-d.o.f. impact oscillators. (a) r versus RE with
KE

i
"1)0. (b) r as a function of RE and KE

i
, KE

i
'RE.
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well as material property. For a particular periodic impact motion the impact velocity is
constant, so we can consider a value for the coe$cient of restitution to be constant in this
case only.

As an example, we consider the vibro-impact cantilever beam system described in detail
by Thompson et al. [7]; see also references [12, 15]. A time series taken from a typical
P(1, 1) motion is shown in Figure 4. When modelling the dynamics of this system
Thompson et al. [7] found that a coe$cient of restitution value of 0)2 was required in order
to simulate the motion of the beam for a range of frequency values close to the "rst natural
frequency of the beam. This simulation was carried out using a single-d.o.f. model.
A simulated time series from this model is shown in Figure 5(a). We can see that this
simulation captures the essential dynamics of the system, in terms of periodicity and
maximum (positive) displacement amplitude.

In order to obtain a multi-modal simulation, we have used a model based on a Galerkin
reduction of the Euler}Bernoulli equation for the vibro-impacting beam system [15]. This



Figure 4. Experimental P(1, 1) beam data. Parameter values A"2)5 V, x
s
"!0)2 V and X"138)42 Hz.

Sampling rate: 4000 samples/s.
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method incorporates an instantaneous impact rule, and assumes that the impact occurs at
the free end of the beam. The result of simulating the motion of the free end of the beam
using four modal co-ordinates and a coe$cient of restitution value of 0)75 is shown in
Figure 5(b). This value of the coe$cient of restitution is much closer to the steel on steel
material range 0)85}0)95, which suggests that the four-d.o.f. model is a closer representation
of the physical system, in terms of both dynamical behaviour and energy transfer. The fact
that the four-d.o.f. system models the dynamics of the beam more closely than the
single-d.o.f. model is perhaps not surprising. However, the energy balance is distinctly
di!erent between the two models, and demonstrates the di$culties encountered when
trying to model the behaviour of these complex systems.

As for many systems, the use of a low-dimensional model may be su$cient to model the
key dynamics, the problem is that an appropriate reduced coe$cient value needs to be
estimated. This can be achieved by using equation (12) in conjunction with experimentally
recorded data [9, 15].

5. CONCLUSIONS

When modelling physical phenomena such as an impacting beam, the main focus of
attention is on simulating the dynamics of the physical system. Thompson et al. [7] show
that for an impacting beam (forced close to its "rst natural frequency) this can be achieved
with a simple (single-d.o.f.) numerical model. However, although the simple model captures
the qualitative dynamics of the system, it fails to simulate the energy loss characteristics.
These must be accounted for in the model by reducing the coe$cient of restitution value to
an appropriate level to account for the energy dissipated due to the excitation of higher
modes at impact.

Here we have shown the relationship which exists between the coe$cient of
restitution and modal energy during periodic impacting motion of arbitrary N-d.o.f. system.
Using simulations of experimental data from impacting beam experiments, we have



Figure 5. Numerical simulations of the vibro-impact beam data shown in Figure 4(a) Single-d.o.f. model r"0)2.
(b) Four-d.o.f. model r"0)75.
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demonstrated the e!ect of using multi-modal models on the value of the coe$cient of
restitution.
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